ABDULLAH GUL UNIVERSITY INSTITUTE OF SCIENCE AND TECHNOLOGY BIOENGINEERING DEPARTMENT INFORMATION OF COURSE INTRODUCTION AND PRACTICE								
Course Name	Course Name CODE SEMESTER I+P Hour CREDIT ECS							
Biophysics	BENG533	Spring-Fall	3 + 0	3	10			

Prerequisite Courses None

Course Type	Selective
Course Language	English
Course Coordinator	Y. Zenmei Ohkubo
Lecturers	Y. Zenmei Ohkubo
Course Assistants	
Course Objectives	Making students understand macromolecular structures and underlying atomic interactions via biophysical view
Learning Outcomes	Students will have the theoretical foundation to understand the properties of macromolecules
Course Content	Macromolecules, metabolic pathways, thermodynamics and kinetics, microscopy and imaging, single molecule techniques, structure determination, modeling and simulation

WEEKLY SUBJECTS AND RELATED PRELIMINARY PAGES				
Week	Subjects	Preliminary		
1	Macromolecules	-		
2	Macromolecular complexes	-		
3	Metabolic pathways	-		
4	Thermodynamics & kinetics I	-		
5	Thermodynamics & kinetics II	-		
6	Microscopy & imaging	-		
7	Student presentation	-		
8	Student presentation	-		
9	Midterm	-		
10	Crystallographic theory	-		
11	Single molecule techniques	-		
12	Spectroscopy	-		
13	Magnetic resonance	-		
14	Modeling & simulation	-		
15	Student presentation	-		
16	Final	-		

RESOURCES					
Course Notes	Notes and slides				
Other Resources	ТВА				

MATERIAL SHARING			
Documents Lecture notes			
Homework	1 homework after each class		
Exams	1 midterm and 1 final exam		

RATING SYSTEM		
SEMESTER WORKS	NUMBER	CONTRIBUTION
Midterm	1	20
Presentation	1	20

Homework	10	30
TOTAL		70
Success Rate of Semester		70
Success Rate of Final	1	30
TOTAL		100

Course Category	
Basic Sciences and Mathematics	%50
Engineering Sciences	%50
Social Sciences	%0

ΤН	E RELATIONSHIP BETWEEN THE LEARNING OUTCOMES AND PROGRAM COMPETENCE						
No	No Program Outcomes		Contribut Level			tion	
			2	3	4 5	5	
1	Understanding of Life Sciences, Mathematics and Engineering at the post-graduate level, and being able to implement of this knowledge into bioengineering problems				х		
2	Having the ability of developing a new scientific method or a technological product or process, and, designing experiments, implementing, collecting data and evaluating regarding these issues				>	<	
3	Choosing technical equipment used in the applications related to bioengineering, having sufficient knowledge in adopting and using new technological equipment				х		
4	Having the ability of reaching the information, using resources, contributing to the literature by transferring the process and results of scientific studies as written or verbally in the national and international environments				>	<	
5	Having the ability of working as an individual or a team, in the teams composed of discipline or different disciplines, gaining awareness of leadership and taking responsibility			х			
6	Having advanced level of foreign language knowledge to manage efficient verbal, written and visual communication in the major field				х		
7	Having the understanding of ethics in science and the responsibility in profession with the awareness of lifelong learning, being beneficial to society and sensitiveness to global issues			х			
8	Being aware of the social impacts of the solutions and applications of the challenges regarding Bioengineering			Х			

*From 1 to 5, it increasingly goes.

Ē

ECTS / WORK-LOAD TABLE						
Activities		Duration (Hour)	Total (Work-Load)			
Course Duration (Including exam week: 16x total course hour)	16	3	48			
Out of Class Exercise Time (Pre-study, reinforcement)	16	8	128			
Reading						
Searching on Internet, library study	16	3	48			
Material Designing, practice						
Preparation of report						
Preparation of presentation	2	10	20			
Presentation	2	3	6			
Homework	10	4	40			
Midterms	1	3	3			
Final	1	3	3			
Total Work-Load			296			
Total Work-Load / 30			296/30			
Course ECTS Credit			10			